Journal of Organometallic Chemistry, 425 (1992) 141–149 Elsevier Sequoia S.A., Lausanne JOM 22323

$[(C_5Me_4R)Co(As_2)]$ -Molekülbausteine *

Otto J. Scherer *, Karl Pfeiffer, Gert Heckmann ** und Gotthelf Wolmershäuser **

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Straße, W-6750 Kaiserslautern (Deutschland)

(Eingegangen den 30. August 1991)

Abstract

The co-thermolysis of $[(\eta^5-C_5Me_4R)Co(CO)_2]$ (1a: R = Me, 1b: R = Et) with yellow arsenic, As₄, affords the binuclear and trinuclear complexes $[(\eta^5-C_5Me_4R)Co(As_2)]_2$ (2a, 2b), $[(\eta^5-C_5Me_4R)_2Co_2 (As_6)]$ (3a, 3b) and $[(\eta^5-C_5Me_4R)Co(As_2)]_3$ (4a, 4b). The structure of 2b, 3a and 4a has been elucidated by X-ray crystallography.

Zusammenfassung

Die Cothermolyse von $[(\eta^5-C_5Me_4R)Co(CO)_2]$ (1a: R = Me, 1b: R = Et) und gelbem Arsen, As₄, ergibt die Zwei- und Dreikernkomplexe $[(\eta^5-C_5Me_4R)Co(As_2)]_2$ (2a, 2b), $[(\eta^5-C_5Me_4R)_2Co_2(As_6)]$ (3a, 3b) und $[(\eta^5-C_5Me_4R)Co(As_2)]_3$ (4a, 4b). 2b, 3a und 4a wurden röntgenstrukturanalytisch charakterisiert.

Einleitung

Von den $(CH)_6$ -Valenzisomeren A-E (Schema 1) des Benzols [1] konnten bei den dazu iso(valenz)elektronischen E₆-Liganden (E = P, As) die Benzol-Analoga

Schema 1. Valenzisomere des Benzols.

^{*} Prof. Dr. Hans-Georg Kuball zum 60. Geburtstag gewidmet.

^{**} Röntgenstrukturanalysen.

	2a	2b	3a	3b	4a	4b
δ (CH ₃)	1.80	1.82	1.67	1.71	1.77	1.79
(s,30	(s,30H)	(s,12H)	(s,30H)	(s,12H)	(s,45H)	(s,18H)
		1.79	198 K:	1.67	173 K:	1.74
		(s,12H)	1.74(s,br,15H)	(s,12H)	1.85(s,br)	(s,18H)
			1.64(s,br,15H)		$\Delta v_{1/2} = 5 \text{Hz}$	
			$\Delta v_{1/2}$ jeweils 11 Hz		1/2	
			$T_{c} = ca. 204 \text{ K}$			
$\delta (C_2H_5)$		2.47(q,4H)		2.30(q,4H)		2.39(q,6H)
		0.82(t,6H)		0.79(t,6H)		0.95(t,9H)
		$^{3}J(HH) = 7.6$		$^{3}J(HH) = 7.5$		$^{3}J(\text{HH}) = 7.6$

¹H-NMR-Daten der Komplexe 2, 3 und 4 (200 MHz, 293 K, C_7D_8 , δ in ppm, J in Hz)

cyclo- E_6 [2] (vgl. dazu A in Schema 1) sowie das einfach kantengeöffnete P_6 -Benzvalen [3] (vgl. dazu C in Schema 1) koordinativ stabilisiert werden.

Ergebnisse und Diskussion

Thermolysiert man die Dicarbonyl-Cobaltkomplexe 1 mit gelbem Arsen, As_4 , dann bilden sich die Zwei- und Dreikernkomplexe 2, 3 und 4.

$$\begin{array}{ccc} \left[\left(\eta^{5} \text{-} C_{5} \text{Me}_{4} \text{R} \right) \text{Co}(\text{CO})_{2} \right] & \xrightarrow{\text{As}_{4}, \text{ Detain}} \\ & \left(1a, 1b \right) & \left[\left(\eta^{5} \text{-} C_{5} \text{Me}_{4} \text{R} \right) \text{Co}(\text{As})_{2} \right]_{2} \\ & + \left[\left(\eta^{5} \text{-} C_{5} \text{Me}_{4} \text{R} \right)_{2} \text{Co}_{2}(\text{As}_{6}) \right] + \left[\left(\eta^{5} \text{-} C_{5} \text{Me}_{4} \text{R} \right) \text{Co}(\text{As})_{2} \right]_{3} \\ & \left(3a, 3b \right) & \left(4a, 4b \right) \end{array}$$

(a: R = Me, b: R = Et)

2a, b bilden grünschwarze, 3a, b und 4a, b braunschwarze Kristalle, die sich in Hexan mässig, Benzol und Toluol mässig bis gut sowie in Dichlormethan gut bis sehr gut lösen, wobei die Lösungen von 3a, b sehr luftempfindlich sind und die von 4a, b—vor allem in Dichlormethan—sich rasch zersetzen.

Exemplarisch durchgeführte temperaturabhängige ¹H-NMR-Messungen (Daten, siehe Tabelle 1) an **3a** und **4a** ergeben nur für **3a** bei < 204 K eine Aufspaltung des C_5Me_5 -Singuletts in zwei gleich grosse Singuletts; bei **4a** findet man selbst bei 173 K nur eine schwache Verbreiterung des C_5Me_5 -Singulettsignals (Tabelle 1).

Röntgenstrukturanalyse [4*] von $[(\eta^5 - C_5 Me_4 Et)Co(\mu, \eta^{2/2} - As_2)]_2$ (2b)

Sie zeigt, dass bei **2b** die beiden Fünfringe sowie die $(As_2)_2$ -Einheit eben und parallel angeordnet sind (Fig. 1, Tabelle 2). Während der As1-As2'-Abstand (2.272(1) Å) der kurzen Seite des As₄-Rechtecks im typischen Bereich [2,5] für $\mu, \eta^{2:2}$ -As₂-Einheiten liegt, findet man für die lange Seite (As1 ··· As2 2.844(1) Å) einen Abstand, der bemerkenswerterweise mit dem des $[(\eta^5-C_5Me_4Et)-Rh(\mu, \eta^{2:2}-P_2)]_2$ (5), $d(P \cdots P)$ 2.845(2) Å [6] übereinstimmt; ähnliches gilt für den Co ··· Co'-Abstand von **2b**, der mit 3.187(1) Å nur geringfügig länger als die 3.100(2) Å des Phosphor-Analogons $[(\eta^5-C_5Me_5)Co(\mu, \eta^{2:2}-P_2)]_2$ (6) [7] ist.

Tabelle 1

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Fig. 1. Struktur von **2b** im Kristall. Ausgewählte Bindungslängen (Å) und -winkel (°). Zwei unabhängige Moleküle in der Elementarzelle, die sich in ihren Abständen und Winkeln nur geringfügig unterscheiden. Molekül (a): As1-As2' 2.272(1), As1 ··· As2 2.844(1), Co-As 1, 2 2.414(1), Co-As1', 2' 2.424(1), Co ··· Co' 3.187(1), Co-Cp'_(Zentrum) 1.69; As2-As1-As2' 90.0(1), As1-As2-As1' 90.0(1), Co-As1-Co' 82.3(1), Co-As2-Co' 82.4(1), As1-Co-As2 72.2(1), As1-Co-As2' 56.3(1), Cp' = η^5 -C₅Me₄Et.

Während bei 5 und 6 die beiden P_2 -Einheiten als 4e-Donor (18 Valenzelektronen, VE, pro Metallatom) fungieren, kommt möglicherweise bei 2b der ebenfalls denkbaren Strukturvariante eines 32 VE-Tripeldecker-Sandwichkomplexes mit rechteckig verzerrtem cyclo-As₄-Mitteldeck [8] eine grössere Bedeutung zu.

Röntgenstrukturanalyse [4*] von $[(\eta^{5}-C_{5}Me_{5})_{2}Co_{2}(As_{6})]$ (3a)

Diese weist bei 3a den As₆-Liganden als interessantesten Gerüstbaustein aus (Fig. 2, Tabelle 3).

Er entspricht einem As₆-Dewar-Benzol (vgl. dazu D in Schema 1), dessen geöffnete As2-As5-Kante (Ås · · · As 3.547 Å) als 2e-Donor für Co1 fungiert. Zur Erreichung von 18 VE steht diesem Atom das σ -Elektronenpaar der As1-As6-Bindung zur Verfügung. Beim Hexamethyl-Dewar-Benzol findet man für den C-C-"Dachfirst" einen Abstand von 1.63(1) Å [9]. Co2 erhält 18 VE durch Beanspruchung der vier π -Elektronen des As₆-Dewar-Benzols. Dies führt insgesamt zu einem kurzen As3-As4-Abstand von 2.332(3) Å und einem deutlich längeren von 2.587(3) Å für As1-As6 (vgl. dazu die Einfachbindungslänge von 2.44 Å im gelben Arsen, As₄, [10], den berechneten Dreifachbindungsabstand von 2.107 Å für As₂ [11], die lange As-As-Bindung von 2.593(6) Å im Realgar, As₄S₄ [12], und den Mittelwert von 2.57 Å für den μ_3, η^3 -As₃-Liganden im [{(C₅Me₄Et)-Ru $_{3}$ Ru $(\eta^{3}$ -As $_{3})(\mu_{3},\eta^{3}$ -As $_{3})(\mu_{3}$ -As $_{3})$ [13] sowie die Verlängerung der side-on-koordinierten σ -Bindung des P₄ von 2.21 auf 2.46 Å im [(Ph₃P)₂ClRh(P₄)] [14]). Der Mittelwert der restlichen vier As-As-Bindungen im kantengeöffneten As₆-Dewar-Benzol-Liganden liegt mit 2.40 Å im Erwartungsbereich [2,5]. Beim Übergang vom Hexamethyl (C₆Me₆)- und Dewar-Benzol (C₆H₆) zum 1,3,5-Triphospha-Dewar-Benzol-Komplex [(C₅Me₅)(CO)V(PCBut)₃] [15] und schliesslich zum As₆ in **3a** verkleinert sich der Diederwinkel (Dachwinkel) zwischen den beiden Vierringen kontinuierlich von 124.5° [9] und 117° [16] über 104° [15] nach 80° bei **3a**.

rabene z

Atom	x	у	Z	U _{eq}
Co(a)	- 1028(1)	10547(1)	707(1)	28(1)
As(1a)	30(1)	8923(1)	1176(1)	46(1)
As(2a)	940(1)	10886(1)	1495(1)	45(1)
C(1a)	- 1912(4)	10613(4)	2573(7)	32(3)
C(2a)	- 2617(5)	10328(4)	946(8)	38(3)
C(3a)	- 2660(5)	11137(4)	-46(8)	41(3)
C(4a)	- 1973(5)	11934(4)	993(7)	37(3)
C(5a)	- 1511(4)	11609(4)	2592(7)	32(3)
C(6a)	- 1714(6)	10020(5)	4037(8)	51(4)
C(7a)	- 3247(6)	9365(5)	431(10)	61(4)
C(8a)	- 3339(6)	11162(6)	- 1814(8)	65(4)
C(9a)	- 1811(6)	12964(4)	515(9)	56(4)
C(10a)	- 797(5)	12227(5)	4075(8)	46(3)
C(11a)	- 1491(6)	12877(6)	5175(9)	70(4)
Co(b)	5683(1)	5924(1)	6174(1)	28(1)
As(1b)	5914(1)	4927(1)	3564(1)	45(1)
As(2b)	4275(1)	5894(1)	3541(1)	45(1)
C(1b)	5835(5)	6902(4)	8437(7)	38(3)
C(2b)	5572(5)	7490(4)	7050(7)	41(3)
C(3b)	6452(5)	7279(4)	6205(7)	39(3)
C(4b)	7235(5)	6548(4)	7025(8)	40(3)
C(5b)	6859(5)	6323(4)	8415(7)	36(3)
C(6b)	5172(6)	6938(6)	9728(8)	62(4)
C(7b)	4592(6)	8254(5)	6652(10)	66(4)
C(8b)	6534(7)	7766(5)	4727(8)	63(4)
C(9b)	8326(5)	6143(6)	6600(11)	69(4)
C(10b)	7479(6)	5650(5)	9716(9)	62(4)
C(11b)	8286(8)	6262(6)	11151(10)	87(5)

Lageparameter der Atome (×10⁴) mit äquivalenten isotropen Temperaturfaktoren (Å²×10³) von Komplex **2b** (U_{eq} = definiert als 1/3 der Spur der orthogonalisierten U_{ij} -Matrix)

Röntgenstrukturanalyse $[4^*]$ von $[(\eta^5 - C_5 Me_5)Co(As_2)]_3$ (4a)

Man findet bei **4a** drei $[(C_5Me_5)Co(As_2)]$ -Fragmente so angeordnet, dass von den neun Kanten eines Hexaarsaprismans (vgl. dazu **B** in Schema 1), das nach vorläufigen theoretischen Berechnungen [17] das stabilste As₆-Isomere darstellt, drei mit 2.289(2) (As5-As6), 2.401(2) (As3-As4) und 2.411(2) Å (As1-As2) kurz, zwei mit 2.726 (As2 ··· As4) und 2.788 Å (As1 ··· As3) länger und vier mit 2.984 bis 3.052 Å (Abstände des As1, 2, 3, 4-Rechtecks zu As5, 6) deutlich länger sind.

Während die vier letzteren mit den zwei nichtbindenden Abständen im $(C_5Me_5)Co2$ -überkappten Gerüstteil von **3a** (Fig. 2, As1 ··· As3 und As4 ··· As6) übereinstimmen, sind die beiden langen Seiten des As1, 2, 3, 4-Rechtecks mit $\overline{d}(As \cdots As)$ 2.76 Å noch um ca. 0.08 Å kürzer als bei **2b** (Fig. 1).

Im Gegensatz zum Cluster $[Pd_9As_8(PPh_3)_8]$, bei dem vier annähernd parallele As₂-Einheiten einen innenzentrierten Pd₉-Kubus schief überdachen [18], liegen bei **4a** zwei parallele (As1, 2 | As3, 4) end- und side-on-koordinierte sowie eine dazu senkrechte (As5, 6), ausschliesslich side-on-koordinierte As₂-Einheit(en) vor. Dem Mittelwert der Co-As-Bindungslänge von 2.39 Å in **4a** stehen bei **3a** (Fig. 2)

Fig. 2. Struktur von **3a** im Kristall. Ausgewählte Bindungslängen (Å) und -winkel (°); As1-As2 2.388(3), As2-As3 2.412(3), As3-As4 2.332(3), As4-As5 2.413(3), As5-As6 2.392(3), As6-As1 2.587(3), As1 ··· As3 2.996, As4 ··· As6 2.999, As2 ··· As5 3.547, Co1-As1 2.437(3), Co1-As2 2.365(3), Co1-As5 2.369(3), Co1-As6 2.443(3), Co2-As1 2.399(3), Co2-As3 2.426(4), Co2-As4 2.418(3), Co2-As6 2.392(3), Co1 ··· Co2 3.790, Co1-Cp^{*}_(Zentrum) 1.71, Co2-Cp^{*}_(Zentrum) 1.72; As1-As2-As3 77.3(1), As4-As5-As6 77.2(1), As2-As3-As4 104.6(1), As3-As4-As5 104.5(1), As2-As1-As6 101.7(1), As1-As6-As5 101.5(1), Diederwinkel As1, 2, 5, 6 | As2, 3, 4, 5 79.7, As1, 3, 4, 6 | As1, 2, 5, 6 bzw. As2, 3, 4, 5 50.1 | 50.3. Cp^{*} = η^5 -C₅Me₅.

2.405 Å und bei **2b** (Fig. 1) 2.42 Å gegenüber. Die Flächen der annähernd gleichschenkeligen Dreiecke As1, 2, 6 |As3, 4, 5 weichen um 9.9° von der Parallelität (die Diederwinkel der drei As-Vierecke enthält Fig. 3), die C_5Me_5 -Fünfringund As-Vierringebenen um 1.1° (Co1) und 3.3° (Co2 |Co3) ab.

Fig. 3. Struktur von 4a im Kristall. Ausgewählte Bindungslängen (Å) und -winkel (°): As1-As2 2.411(2), As3-As4 2.401(2), As5-As6 2.289(2), As1 ··· As3 2.788, As2 ··· As4 2.726, As1 ··· As6 2.984, As2 ··· As6 3.010, As3 ··· As5 3.011, As4 ··· As5 3.052, Co1-As1 2.386(2), Co1-As2 2.402(2), Co1-As3 2.393(2), Co1-As4 2.400(2), Co2-As1 2.366(2), Co2-As3 2.366(2), Co2-As5 2.415(2), Co2-As6 2.426(2), Co3-As2 2.376(2), Co3-As4 2.374(2), Co3-As5 2.413(2), Co3-As6 2.414(2), Co1-Cp^{*}_(Zentrum) 1.71, Co2-Cp^{*}_(Zentrum) 1.75, Co3-Cp^{*}_(Zentrum) 1.75; As2-As1-As3 89.2(1), As1-As2-As4 90.6(1), As1-As3-As4 89.3(1), As2-As4-As3 90.9(1), Diederwinkel As1, 2, 3, 4 |As1, 3, 5, 6 bzw. As2, 4, 5, 6 67.2 |65.6, As1, 3, 5, 6 |As2, 4, 5, 6 47.2. Cp^{*} = η^{5} -C₅Me₅.

Tabelle	3
---------	---

Atom	x	у	z	$U_{ m eq}$	
Co(1)	2013(1)	538(2)	1180(1)	36(1)	
Co(2)	1066(1)	2756(2)	54(1)	41(1)	
As(1)	1194(1)	690(2)	206(1)	47(1)	
As(2)	1958(1)	473(2)	- 143(1)	52(1)	
As(3)	1645(1)	2340(2)	- 691(1)	58(1)	
As(4)	1894(1)	3646(2)	334(1)	53(1)	
As(5)	2338(1)	2458(2)	1418(1)	47(1)	
As(6)	1470(1)	2137(2)	1345(1)	44(1)	
C(1)	2021(9)	-1310(17)	1304(12)	64(14)	
C(2)	1831(8)	- 762(18)	1875(11)	54(12)	
C(3)	2188(8)	30(16)	2337(12)	55(12)	
C(4)	2634(8)	- 82(16)	2066(11)	47(11)	
C(5)	2535(10)	- 858(17)	1405(12)	68(14)	
C(11)	1745(9)	-2171(17)	700(14)	87(15)	
C(12)	1316(10)	- 995(22)	2009(15)	100(19)	
C(13)	2177(9)	710(19)	3006(11)	74(15)	
C(14)	3142(8)	439(18)	2428(13)	81(14)	
C(15)	2883(9)	- 1327(19)	975(13)	75(16)	
C(6)	587(8)	3735(21)	- 851(14)	64(14)	
C(7)	341(8)	2652(20)	- 738(12)	69(14)	
C(8)	304(7)	2645(18)	33(12)	53(12)	
C(9)	505(7)	3680(19)	438(13)	58(13)	
C(10)	676(8)	4340(18)	- 140(17)	75(14)	
C(16)	679(10)	4143(24)	- 1588(15)	102(19)	
C(17)	137(9)	1731(20)	- 1370(13)	86(16)	
C(18)	57(9)	1716(20)	364(14)	79(15)	
C(19)	504(9)	4071(25)	1209(14)	107(19)	
C(20)	897(9)	5597(19)	27(19)	134(21)	
Cl(1)	0	1018(18)	2500	290(11)	
Cl(2)	796(11)	2265(23)	3261(15)	249(13)	

Lageparameter der Atome ($\times 10^4$) mit äquivalenten isotropen bzw. äquivalenten Temperaturfaktoren ($\mathring{A}^2 \times 10^3$) von Komplex **3a**

In 4a, dessen Co_3As_6 -Gerüst formal aus einem dreifach überkappten, stark verzerrten As_6 Prisman besteht, fungiert jede As_2 -Einheit als 4e-Donor (ausgezogene Linien in Fig. 3), wodurch jedes Co-Atom der 18 VE-Regel genügt.

Massenspektren von 2a, 3a und 4a

Die an den C_5Me_5 -Derivaten exemplarisch durchgeführten Studien sind in Tabelle 5 ausgewertet.

Aus Tabelle 5 lassen sich folgende Trends ableiten:

- (a) Bei 2a und 4a ist der Molekülpeak M^+ jeweils am intensitätsstärksten, dem bei 4a durch formale Cp*CoAs₂-Eliminierung der von 2a⁺ mit 87% folgt.
- (b) Beim Dreikernkomplex 4a werden sukzessive die drei Cp*-Liganden abgespalten; zurück bleibt der "nackte" [Co₃As₆]⁺-Cluster als intensitätsstärkster (10%) Peak dieser Serie.
- (c) Bei allen drei Komplexen beobachtet man die Fragmente [Cp^{*}₂Co₂As₃]⁺ (30 VE-Tripeldecker?), [Cp^{*}Co₂As₄]⁺, [Co₂As₄]⁺, [Cp^{*}Co₂As₂]⁺, [Cp^{*}CoAs₂]⁺, [Cp^{*}CoAs₂]⁺, [Cp^{*}CoAs₂]⁺, [Cp^{*}CoAs₂]⁺.

Tabelle 4

Lageparameter der Atome ($\times 10^4$) mit äquivalenten isotropen Temperaturfaktoren (Å² $\times 10^3$) von Komplex 4a

Atom	x	у	z	U _{eq}
Co(1)	- 493(1)	2092(1)	8933(1)	30(1)
Co(2)	2757(1)	2312(1)	9505(1)	27(1)
Co(3)	1662(1)	904(1)	7942(1)	28(1)
As(1)	1090(1)	1562(1)	9737(1)	33(1)
As(2)	368(1)	687(1)	8740(1)	34(1)
As(3)	1130(1)	3042(1)	8894(1)	32(1)
As(4)	402(1)	2139(1)	7921(1)	32(1)
As(5)	3018(1)	2069(1)	8331(1)	39(1)
As(6)	2955(1)	853(1)	9019(1)	37(1)
C(1)	- 1858(13)	2962(12)	8699(10)	60(11)
C(2)	- 1519(12)	2995(12)	9385(10)	62(11)
C(3)	- 1630(12)	2118(15)	9627(8)	65(11)
C(4)	-2106(13)	1577(11)	9066(10)	60(11)
C(5)	- 2220(11)	2111(14)	8482(8)	60(10)
C(6)	- 1861(17)	3800(15)	8242(14)	144(20)
C(7)	- 1141(17)	3824(14)	9826(12)	122(17)
C(8)	- 1438(15)	1799(18)	10382(9)	123(17)
C(9)	- 2460(16)	621(12)	9109(14)	139(19)
C(10)	- 2741(13)	1859(19)	7758(10)	135(18)
C(11)	3500(11)	2300(9)	10547(6)	39(8)
C(12)	2958(11)	3135(10)	10376(7)	42(8)
C(13)	3536(11)	3527(9)	9855(7)	41(8)
C(14)	4419(10)	2922(9)	9729(6)	38(8)
C(15)	4415(11)	2186(10)	10158(6)	43(8)
C(16)	3228(14)	1680(11)	11120(7)	64(10)
C(17)	1995(12)	3579(10)	10685(7)	55(9)
C(18)	3308(13)	4446(9)	9553(8)	57(9)
C(19)	5276(11)	3131(11)	9255(8)	61(10)
C(20)	5254(12)	1399(10)	10197(8)	65(10)
C(21)	2428(15)	- 262(9)	7569(7)	51(9)
C(22)	1224(14)	- 362(10)	7508(8)	52(9)
C(23)	719(11)	318(8)	7070(7)	35(7)
C(24)	1612(12)	851(9)	6877(6)	38(8)
C(25)	2709(13)	473(10)	7191(7)	52(9)
C(26)	3383(18)	- 821(12)	7951(8)	106(14)
C(27)	633(17)	-1126(9)	7779(9)	83(12)
C(28)	- 582(12)	410(11)	6814(8)	66(11)
C(29)	1407(16)	1636(10)	6365(8)	72(11)
C(30)	3880(13)	823(14)	7070(10)	92(13)

Experimenteller Teil

Alle Arbeiten wurden in getrockneten Lösungsmitteln unter Argon-Schutzgasatmosphäre durchgeführt.

Zwei- und Dreikernkomplexe 2, 3 und 4. 2a, 3a, 4a [2b, 3b, 4b]: Zu 1.34 g (5.36 mmol) 1a [1.15 g (4.35 mmol) 1b] werden 150 ml einer frisch hergestellten, heissen Lösung von gelbem Arsen, As_4 , in Dekalin (ca. 20 mg As_4/ml) pipettiert und sofort ca. 4 h unter Rückfluss gerührt. Die braune Reaktionslösung (Arsenspiegel

1022		•	CP3 C031 136 (44)
1032			100
897			6
838		14	
762			3
688	100	100	87
627			10
613	9	8	30
553	5	2	4
538	3	2	
516			$34 M^{2+}$
494		2	
419		$3 M^{+}/2 \text{ oder } M^{2+}$	
418	2	2	2
403	5	1	5
344	13 M^{2+} sowie $M^+/2$	12	9
329	6	2	3
300	3	9	13
269	4	1	
150		1	
135		9	5
	$\begin{array}{c} 1052\\ 897\\ 838\\ 762\\ 688\\ 627\\ 613\\ 553\\ 538\\ 516\\ 494\\ 419\\ 418\\ 403\\ 344\\ 329\\ 300\\ 269\\ 150\\ 135\\ \end{array}$	$ \begin{array}{r} 1032 \\ 897 \\ 838 \\ 762 \\ 688 \\ 100 \\ 627 \\ 613 \\ 9 \\ 553 \\ 5 \\ 538 \\ 3 \\ 516 \\ 494 \\ 419 \\ 418 \\ 403 \\ 5 \\ 344 \\ 13 M^{2+} \text{ sowie } M^+/2 \\ 329 \\ 6 \\ 300 \\ 3 \\ 269 \\ 4 \\ 150 \\ 135 \\ \end{array} $	1032 897 838 14 762 688 100 100 627 - 613 9 8 553 5 2 538 3 2 516 - - 419 3 $M^+/2$ oder M^{2+} 418 2 2 403 5 1 344 13 M^{2+} sowie $M^+/2$ 12 329 6 2 300 3 9 269 4 1 150 1 135 9

Ausgewählte El-MS-Daten der Komplexe 2a, 3a und 4a (%) (70 eV, 140°C 2a, 300°C 3a, 360°C 4a), Cp^{*} = C₅Me₅

an der Glaswand) wird mit ca. 2 g Al_2O_3 (basisch, Aktivitätsstufe II) versetzt und unter Erwärmen im Ölpumpenvakuum zur Rieselfähigkeit getrocknet. Säulenchromatographisch (Säule: 25×2.5 cm, bepackt mit Al₂O₂/Petrolether) eluiert man mit Petrolether/Toluol (4/1) zunächst als dunkelgrüne Fraktion 108 mg (6%)**2a** [33 mg (2%) **2b**], dann 495 mg (27%) **4a** [243 mg (16%) **4b**] als kastanienbraune Fraktion. Ein 1:1-Gemisch eluiert **3a**, **b** als dunkelbraune Fraktion. Ausb. 383 mg (17%) **3a** [216 mg (11%) **3b**]. Eine Zwischenfraktion enthält geringe Mengen der Gemische 3a, b und 4a, b. 2a, b ergibt bei der Umkristallisation aus n-Hexan (ca. -30°C) grünschwarze Kristalle (2a dünne Nadeln, 2b Quader). 4a, b wird aus siedendem Benzol, 3a, b aus Dichlormethan als braun-schwarze Kristalle erhalten (**3a**, **4a** Rauten, **3b**, **4b** Quader). **2a**: Gef.: C, 33.80; H, 4.23; C₂₀H₃₀As₄Co₂ (688.0) ber.: C, 34.92; H, 4.39%. 2b: Gef.: C, 37.08; H, 4.85; C₂₂H₃₄As₄Co₂ (716.1) ber.: C, 36.90; H, 4.79%. **3a**: Gef.: C, 27.83; H, 3.59; $C_{20}H_{30}As_6Co_2 \cdot 1/2CH_2Cl_2$ (880.3) ber.: C, 27.97; H, 3.55%. **3b**: Gef.: C, 30.57; H, 4.02; C₂₂H₃₄As₆Co₂ (865.9) ber.: C, 30.52; H, 3.96%. 4a: Gef.: C, 34.94; H, 4.49; C₃₀H₄₅As₆Co₃ (1032.0) ber.: C, 34.92; H, 4.39%. 4b: Gef.: C, 36.18; H, 4.73; C₃₃H₅₁As₆Co₃ (1074.1) ber.: C, 36.90; H. 4.79%.

Dank

Wir danken dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit mit Sachmitteln.

Tabelle 5

Literatur und Bemerkungen

- 1 Siehe beispielsweise: Y. Kobayashi und I. Kumadaki, Top. Curr. Chem., 123 (1984) 103.
- 2 Neueste Übersicht: O.J. Scherer, Angew. Chem., 102 (1990) 1137; Angew. Chem. Int. Ed. Engl., 29 (1990) 1104.
- 3 O.J. Scherer, B. Werner, G. Heckmann und G. Wolmershäuser, Angew. Chem., 103 (1991) 562; Angew. Chem. Int. Ed. Engl., 30 (1991) 553.
- 4 (a) **2b**, $P\overline{1}$, a 12.336(1), b 13.060(1), c 8.280(1) Å; α 98.65(1), β 104.61(1), γ 84.63(1)°; Z = 2; 4393 unabhängige Reflexe (Mo- K_{α} : 1.5° $\leq \theta$ 26°), davon 3592 beobachtet mit $I \geq 2\sigma(I)$; 289 Parameter; R = 0.036, $R_w = 0.040$ [4d]; (b) **3a**, enthält 1/2 Molekül CH₂Cl₂, C2_c, a 27.624(4), b 11.463(1), c 18.177(2) Å; β 106.99(1)°; Z = 8; 3933 unabhängige Reflexe (Mo- K_{α} : 1.5° $\leq \theta$ 25°), davon 2219 beobachtet; 259 Parameter; R = 0.059, $R_w = 0.061$ [4d]; (c) **4a**, $P2_1/n$, a 11.735(1), b 15.071(1), c 19.757(2) Å; $\beta = 98.96(1)^\circ$; Z = 4; 5326 unabhängige Reflexe (Mo- K_{α} : 1.5° $\leq \theta \leq 26^\circ$), davon 3514 beobachtet; 352 Parameter; R = 0.050, $R_w = 0.050$ [4d]; (d) Lösung und Verfeinerung der Strukturen mit den Programmsystemen SHELX-76, SHELXS-86. Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55745, der Autoren und des Zeitschriftenzitats angefordert werden.
- 5 A.-J. Di Maio und A.L. Rheingold, Chem. Rev., 90 (1990) 169.
- 6 O.J. Scherer, M. Swarowsky und G. Wolmershäuser, Angew. Chem., 100 (1988) 423; Angew. Chem. Int. Ed. Engl., 27 (1988) 405.
- 7 A. Bjarnason, R.E. Des Enfants II, M.E. Barr und L.F. Dahl, Organometallics, 9 (1990) 657.
- 8 Theoretische Studien: D. Jemmis und A.C. Reddy, Organometallics, 7 (1988) 1561; W. Tremel, R. Hoffmann und M. Kertesz, J. Am. Chem. Soc., 111 (1989) 2030.
- 9 M.J. Cardillo und S.H. Bauer, J. Am. Chem. Soc., 92 (1970) 2399.
- 10 L.R. Maxwell, S.B. Hendricks und V.M. Mosley, J. Chem. Phys., 3 (1935) 699.
- 11 G.E. Scuseria, J. Chem. Phys., 92 (1990) 6722.
- 12 E.J. Porter und G.M. Sheldrick, J. Chem. Soc., Dalton Trans., (1972) 1347.
- 13 O.J. Scherer, C. Blath, G. Heckmann und G. Wolmershäuser, J. Organomet. Chem., 409 (1991) C15.
- 14 A.P. Ginsberg, W.E. Lindsell, K.J. McCullough und C.R. Sprinkle, J. Am. Chem. Soc., 108 (1986) 403.
- 15 R. Milczarek, W. Rüsseler, P. Binger, K. Jonas, K. Angermund, C. Krüger und M. Regitz, Angew. Chem., 99 (1987) 957; Angew. Chem. Int. Ed. Engl., 26 (1987) 908, sowie C. Krüger, persönliche Mitteilung.
- 16 E.A. McNeill und F.R. Scholer, J. Mol. Struct., 31 (1976) 65.
- 17 R.O. Jones und D. Hohl, J. Chem. Phys., 91 (1990) 6710.
- 18 D. Fenske und C. Persau, Z. Anorg. Allg. Chem., 593 (1991) 61.